Meta-model of a large credit risk portfolio in the Gaussian copula model
Florian Bourgey (),
Emmanuel Gobet () and
Clément Rey ()
Additional contact information
Florian Bourgey: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Clément Rey: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We design a meta-model for the loss distribution of a large credit portfolio in the Gaussian copula model. Using both the Wiener chaos expansion on the systemic economic factor and a Gaussian approximation on the associated truncated loss, we significantly reduce the computational time needed for sampling the loss and therefore estimating risk measures on the loss distribution. The accuracy of our method is confirmed by many numerical examples.
Keywords: Monte Carlo simulation; portfolio credit risk; polynomial chaos expansion; meta-model (search for similar items in EconPapers)
Date: 2020-11-09
Note: View the original document on HAL open archive server: https://hal.science/hal-02291548v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in SIAM Journal on Financial Mathematics, 2020, 11 (4), pp.1098-1136. ⟨10.1137/19M1292084⟩
Downloads: (external link)
https://hal.science/hal-02291548v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02291548
DOI: 10.1137/19M1292084
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().