EconPapers    
Economics at your fingertips  
 

Towards using responsible artificial intelligence in product recommender systems in marketing

Christine Balagué () and El Mehdi Rochd ()
Additional contact information
Christine Balagué: IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris]
El Mehdi Rochd: IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris]

Post-Print from HAL

Abstract: Most of product recommender systems in marketing are based on artificial intelligence algorithms using machine learning or deep learning techniques. One of the current challenges for companies is to avoid negative effects of these product recommender systems on customers (or prospects), such as unfairness, biais, discrimination, opacity, encapsulated opinion in the implemented recommender systems algorithms. This research focuses on the fairness challenge. We first make a literature review on the importance and challenges of using ethical algorithms. Second, we define the fairness concept and present the reasons why it is important for companies to address this issue in marketing. Third, we present the different methodologies used in recommender systems algorithms. Using a dataset in the entertainment industry, we measure the algorithm fairness for each methology and compare the results. Finally, we improve the existing methods by proposing a new product recommender system aiming at increasing fairness versus previous methods, without compromising the recommendation systems performance.

Keywords: Recommender systems; Ethics; Algorithms; Fairness (search for similar items in EconPapers)
Date: 2019-06-20
New Economics Papers: this item is included in nep-big, nep-cmp and nep-pay
Note: View the original document on HAL open archive server: https://hal.science/hal-02332033v1
References: Add references at CitEc
Citations:

Published in 41st Annual ISMS Marketing Science Conference, Jun 2019, Rome, Italy

Downloads: (external link)
https://hal.science/hal-02332033v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02332033

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-02332033