New Weak Error bounds and expansions for Optimal Quantization
Vincent Lemaire (),
Thibaut Montes and
Gilles Pagès ()
Additional contact information
Vincent Lemaire: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - UPD7 - Université Paris Diderot - Paris 7 - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique
Thibaut Montes: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - UPD7 - Université Paris Diderot - Paris 7 - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique, ICA - The Independent Calculation Agent
Gilles Pagès: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - UPD7 - Université Paris Diderot - Paris 7 - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We propose new weak error bounds and expansion in dimension one for optimal quantization-based cubature formula for different classes of functions, such that piecewise affine functions, Lipschitz convex functions or differentiable function with piecewise-defined locally Lipschitz or α-Hölder derivatives. This new results rest on the local behaviors of optimal quantizers, the L r-L s distribution mismatch problem and Zador's Theorem. This new expansion supports the definition of a Richardson-Romberg extrapolation yielding a better rate of convergence for the cubature formula. An extension of this expansion is then proposed in higher dimension for the first time. We then propose a novel variance reduction method for Monte Carlo estimators, based on one dimensional optimal quantizers.
Keywords: Optimal quantization; Numerical integration; Weak error; Romberg extrapolation; Variance reduction; Monte Carlo simulation; Product quantizer; Product quantizer 2010 AMS Classification: 65C05; 60E99; 65C50 (search for similar items in EconPapers)
Date: 2020
Note: View the original document on HAL open archive server: https://hal.science/hal-02361644v3
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Published in Journal of Computational and Applied Mathematics, inPress, 371, pp.112670. ⟨10.1016/j.cam.2019.112670⟩
Downloads: (external link)
https://hal.science/hal-02361644v3/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02361644
DOI: 10.1016/j.cam.2019.112670
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().