Uplift modeling for recommendation system
Atef Shaar (),
Talel Abdessalem () and
Olivier Segard ()
Additional contact information
Atef Shaar: LTCI - Laboratoire Traitement et Communication de l'Information - Télécom ParisTech - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, INFRES - Département Informatique et Réseaux - Télécom ParisTech
Talel Abdessalem: LTCI - Laboratoire Traitement et Communication de l'Information - Télécom ParisTech - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, INFRES - Département Informatique et Réseaux - Télécom ParisTech
Olivier Segard: IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - TEM - Télécom Ecole de Management
Post-Print from HAL
Abstract:
Uplift Modeling is a branch of machine learning which aims at predicting the causal effect of an action on a given individual. It aims to predict not the class itself, but the difference between the class variable behaviors in two groups. By using uplift modeling for recommender system, we can differentiate between the effects of two treatment and specify the best treatment based on its impact on customer behavior. We applied uplift modeling algorithms on marketing campaign dataset, we measured the real impact of the each treatment and optimized the recommender system by sub-targeting and personalizing.
Date: 2016-03-24
References: Add references at CitEc
Citations:
Published in ParisBD 2016 : Paris Big Data Management Summit, Mar 2016, Paris, France
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02376026
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().