EconPapers    
Economics at your fingertips  
 

Pore water pressure evolution below a freezing front under saturated conditions: Large-scale laboratory experiment and numerical investigation

Agnès Rivière (), Anne Jost (), Julio Goncalves () and Marianne Font ()
Additional contact information
Agnès Rivière: GEOSCIENCES - Centre de Géosciences - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres
Anne Jost: METIS - Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols - EPHE - École Pratique des Hautes Études - PSL - Université Paris Sciences et Lettres - INSU - CNRS - Institut national des sciences de l'Univers - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique
Julio Goncalves: CEREGE - Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement - IRD - Institut de Recherche pour le Développement - INRA - Institut National de la Recherche Agronomique - AMU - Aix Marseille Université - CdF (institution) - Collège de France - INSU - CNRS - Institut national des sciences de l'Univers - CNRS - Centre National de la Recherche Scientifique
Marianne Font: M2C - Morphodynamique Continentale et Côtière - UNICAEN - Université de Caen Normandie - NU - Normandie Université - INSU - CNRS - Institut national des sciences de l'Univers - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: Subpermafrost aquifer hydrodynamics is generally poorly known due to monitoring technology issues. The few available data show that this aquifer is confined below continuous permafrost due to ice expansion. We conducted a 2 m × 1 m × 1 m sand box experiment under controlled conditions in a cold room to (1) evaluate the confinement of the unfrozen part of a saturated porous medium below a propagating freezing/thawing front, (2) assess the associated uplift of the soil surface, and therefore (3) quantify how the ice expansion translates into frost heave and excess pore-water pressure in the unfrozen part below the freezing soil. Pore water pressure, soil temperature and soil heave were monitored inside the sand box during a 70-day freeze-thaw cycle. A transient fully coupled heat transport and water flow model (called Ginette) was developed to reproduce the freeze-thaw experiment numerically. It takes into account excess pore-water pressure related to pore water phase changes and uses a simple hydro-mechanical term based on the storage coefficient to estimate soil heave. Fairly good agreement was obtained between measured and simulated pressure heads in the unfrozen part below the freezing front over time. Both experimental and numerical approaches show that the ice expansion is translated into excess pore-water pressure (maximum pore water pressure: 5.5 m) and frost heave (2.2 cm).

Keywords: Frost heave; Large-scale laboratory experiment; Numerical simulations; Subpermafrost aquifer; Excess pore-water pressure; Freeze-thaw cycle; Ice expansion (search for similar items in EconPapers)
Date: 2019-02
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Published in Cold Regions Science and Technology, 2019, 158, pp.76-94. ⟨10.1016/j.coldregions.2018.11.005⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02404162

DOI: 10.1016/j.coldregions.2018.11.005

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-02404162