EconPapers    
Economics at your fingertips  
 

Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations

F Bourgey, S de Marco, Emmanuel Gobet (emmanuel.gobet@polytechnique.edu) and Alexandre Zhou
Additional contact information
F Bourgey: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
S de Marco: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Alexandre Zhou: CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées

Post-Print from HAL

Abstract: The Multilevel Monte-Carlo (MLMC) method developed by Giles [Gil08] has a natural application to the evaluation of nested expectation of the form E [g(E [f (X, Y)|X])], where f, g are functions and (X, Y) a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of Initial Margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotical optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal/dual algorithms for stochastic control problems.

Date: 2020-04-15
Note: View the original document on HAL open archive server: https://hal.science/hal-02430430v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in Monte Carlo Methods and Applications, 2020, 26 (2), ⟨10.1515/mcma-2020-2062⟩

Downloads: (external link)
https://hal.science/hal-02430430v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02430430

DOI: 10.1515/mcma-2020-2062

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-02430430