Generalized Integral Transforms with the Homotopy Perturbation Method
Jules Sadefo-Kamdem
Additional contact information
Jules Sadefo-Kamdem: LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier
Authors registered in the RePEc Author Service: Jules SADEFO KAMDEM
Post-Print from HAL
Abstract:
This paper applies He's homotopy perturbation method to compute a large variety of integral transforms. The Esscher, Fourier, Hankel, Laplace, Mellin and Stieljes integrals transforms are particular cases of our generalized integral transform. Our method is of practical importance in order to derive new integration formulae, to approximate certain difficult integrals as well as to calculate the expectation of certain nonlinear functions of random variable.
Keywords: He’s homotopy method; Integral transforms; Applied probability; Type G and spherical distributions; Expected utility (search for similar items in EconPapers)
Date: 2014-06
References: Add references at CitEc
Citations:
Published in Journal of Mathematical Modelling and Algorithms in Operations Research, 2014, 13 (2), pp.209-232. ⟨10.1007/s10852-013-9232-x⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02901783
DOI: 10.1007/s10852-013-9232-x
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().