EconPapers    
Economics at your fingertips  
 

KURTOSIS AND SEMI-KURTOSIS FOR PORTFOLIO SELECTION WITH FUZZY RETURNS

Louis Aimé Fono (), Jules Sadefo-Kamdem and Christian Deffo Tassak
Additional contact information
Louis Aimé Fono: Université de Douala
Jules Sadefo-Kamdem: LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier
Christian Deffo Tassak: UY1 - Université de Yaoundé I

Authors registered in the RePEc Author Service: Jules SADEFO KAMDEM

Post-Print from HAL

Abstract: The literature on portfolio analysis assumes that the securities returns are random variables with fixed expected returns and variances values (see Bachelier [1], Briec et al. [4] and Markowitz [10]). However, since investors receive efficient or inefficient information from the real world, ambiguous factors usually exist in it. Consequently, we need to consider not only random conditions but also ambiguous and subjective conditions for portfolio selection problems. A recent literature has recognized the fuzziness and the uncertainty of portfolios returns. As discussed in [6], investors can make use of fuzzy set to reflect the vagueness and ambiguity of securities (i.e. incompleteness of information due to the lack of data). Therefore, the probability theory becomes difficult to used. For example, some authors such as Tanaka and Guo [11] quantified mean and variance of a portfolio through fuzzy probability and possibility distributions, Carlsson et al.[2]-[3] used their own definitions of mean and variance of fuzzy numbers. In particular, Huang [7] quantified portfolio return and risk by the expected value and variance based on credibility measure. Recently, Huang [7] has proposed the mean-semivariance model for portfolio selection and, Li et al.[5], Kar et al.[8] introduced mean-variance-skewness for portfolio selection with fuzzy returns. Different from Huang [7] and Li et al.[5], after recalling the definition of mean, variance , semi-variance and skewness, this paper considers the Kurtosis and semi-Kurtosis for portfolio selection with fuzzy risk factors (i.e. returns). Several empirical studies show that portfolio returns have fat tails. Generally investors would prefer a portfolio return with smaller semi-kurtosis (or Kurtosis) which indicates the leptokurtosis (fat-tails or thin-tails) when the mean value, the variance and the asymmetry are the same. Our main objective is to contribute to a sound formal foundation of statistics and finance built upon the theory of fuzzy set.

Date: 2011-08-21
Note: View the original document on HAL open archive server: https://hal.science/hal-02938898v1
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in International Statistical Institute : 58th World Statistical Congress, Aug 2011, dublin, Ireland

Downloads: (external link)
https://hal.science/hal-02938898v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02938898

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-31
Handle: RePEc:hal:journl:hal-02938898