Forecasting the Stability and Growth Pact compliance using Machine Learning
Kea Baret (),
Amélie Barbier-Gauchard () and
Theophilos Papadimitriou
Additional contact information
Kea Baret: BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Amélie Barbier-Gauchard: BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
Since the reinforcement of the Stability and Growth Pact (1996), the European Commission closely monitors public finance in the EU members. A failure to comply with the 3% limit rule on the public deficit by a country triggers an audit. In this paper, we present a Machine Learning based forecasting model for the compliance with the 3% limit rule. To do so, we use data spanning the period from 2006 to 2018 (a turbulent period including the Global Financial Crisis and the Sovereign Debt Crisis) for the 28 EU Member States. A set of eight features are identified as predictors from 141 variables through a feature selection procedure. The forecasting is performed using the Support Vector Machines (SVM). The proposed model reached 91.7% forecasting accuracy and outperformed the Logit model that we used as benchmark.
Keywords: Fiscal Rules; Fiscal Compliance; Stability and Growth Pact; Machine learning (search for similar items in EconPapers)
Date: 2023-10-26
New Economics Papers: this item is included in nep-big and nep-cmp
Note: View the original document on HAL open archive server: https://hal.science/hal-03121966v2
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in The World Economy, 2023, 47 (1), pp.188-216. ⟨10.1111/twec.13518⟩
Downloads: (external link)
https://hal.science/hal-03121966v2/document (application/pdf)
Related works:
Working Paper: Forecasting the Stability and Growth Pact compliance using Machine Learning (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03121966
DOI: 10.1111/twec.13518
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().