Implications of climate change mitigation strategies on international bioenergy trade
Vassilis Daioglou,
Matteo Muratori (),
Patrick Lamers,
Shinichiro Fujimori,
Alban Kitous (),
Alexandre Köberle,
Nico Bauer,
Martin Junginger,
Etsushi Kato,
Florian Leblanc (),
Silvana Mima (),
Marshal Wise and
Detlef van Vuuren
Additional contact information
Vassilis Daioglou: PBL Netherlands Environmental Assessment Agency
Matteo Muratori: Dipartimento di Matematica, "Francesco Brioschi" - POLIMI - Politecnico di Milano [Milan]
Patrick Lamers: Dipartimento di Matematica, "Francesco Brioschi" - POLIMI - Politecnico di Milano [Milan]
Shinichiro Fujimori: NIES - National Institute for Environmental Studies
Alban Kitous: Enerdata
Alexandre Köberle: UNIRIO - Universidade Federal do Estado do Rio de Janeiro
Nico Bauer: PIK - Potsdam-Institut für Klimafolgenforschung
Martin Junginger: Universiteit Utrecht / Utrecht University [Utrecht]
Etsushi Kato: TITECH - Tokyo Institute of Technology [Tokyo]
Florian Leblanc: CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique, Cirad-ES - Département Environnements et Sociétés - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement
Silvana Mima: GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Marshal Wise: Joint Global Change Research Institute - PNNL - Pacific Northwest National Laboratory - UMD - University of Maryland [College Park] - University System of Maryland
Detlef van Vuuren: PBL Netherlands Environmental Assessment Agency
Post-Print from HAL
Abstract:
Most climate change mitigation scenarios rely on increased use of bioenergy to decarbonize the energy system. Here we use results from the 33rd Energy Modeling Forum study (EMF-33) to investigate projected international bioenergy trade for different integrated assessment models across several climate change mitigation scenarios. Results show that in scenarios with no climate policy, international bioenergy trade is likely to increase over time, and becomes even more important when climate targets are set. More stringent climate targets, however, do not necessarily imply greater bioenergy trade compared to weaker targets, as final energy demand may be reduced. However, the scaling up of bioenergy trade happens sooner and at a faster rate with increasing climate target stringency. Across models, for a scenario likely to achieve a 2 °C target, 10–45 EJ/year out of a total global bioenergy consumption of 72–214 EJ/year are expected to be traded across nine world regions by 2050. While this projection is greater than the present trade volumes of coal or natural gas, it remains below the present trade of crude oil. This growth in bioenergy trade largely replaces the trade in fossil fuels (especially oil) which is projected to decrease significantly over the twenty-first century. As climate change mitigation scenarios often show diversified energy systems, in which numerous world regions can act as bioenergy suppliers, the projections do not necessarily lead to energy security concerns. Nonetheless, rapid growth in the trade of bioenergy is projected in strict climate mitigation scenarios, raising questions about infrastructure, logistics, financing options, and global standards for bioenergy production and trade.
Keywords: Bioenergy trade; Climate policy; Energy security; Scenario analysis; Integrated assessment models; EMF (search for similar items in EconPapers)
Date: 2020-12
Note: View the original document on HAL open archive server: https://hal.science/hal-03133038v1
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Published in Climatic Change, 2020, 163 (3), pp.1639-1658. ⟨10.1007/s10584-020-02877-1⟩
Downloads: (external link)
https://hal.science/hal-03133038v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03133038
DOI: 10.1007/s10584-020-02877-1
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().