Rate of convergence for particle approximation of PDEs in Wasserstein space *
Maximilien Germain (),
Huyên Pham () and
Xavier Warin
Additional contact information
Maximilien Germain: EDF - EDF, LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité, EDF R&D - EDF R&D - EDF - EDF, EDF R&D OSIRIS - Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie - EDF R&D - EDF R&D - EDF - EDF
Huyên Pham: FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF, LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Xavier Warin: EDF - EDF, FiME Lab - Laboratoire de Finance des Marchés d'Energie - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CREST - EDF R&D - EDF R&D - EDF - EDF, EDF R&D - EDF R&D - EDF - EDF, EDF R&D OSIRIS - Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie - EDF R&D - EDF R&D - EDF - EDF
Post-Print from HAL
Abstract:
We prove a rate of convergence for the $N$-particle approximation of a second-order partial differential equation in the space of probability measures, like the Master equation or Bellman equation of mean-field control problem under common noise. The rate is of order $1/N$ for the pathwise error on the solution $v$ and of order $1/\sqrt{N}$ for the $L^2$-error on its $L$-derivative $\partial_\mu v$. The proof relies on backward stochastic differential equations techniques.
Date: 2022
Note: View the original document on HAL open archive server: https://hal.science/hal-03154021v3
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Journal of Applied Probability, inPress, 59 (4)
Downloads: (external link)
https://hal.science/hal-03154021v3/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03154021
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().