Host type and pricing on Airbnb: Seasonality and perceived market power
Georges Casamatta (),
Sauveur Giannoni,
Daniel Brunstein and
Johan Jouve ()
Additional contact information
Georges Casamatta: LISA - Laboratoire « Lieux, Identités, eSpaces, Activités » (UMR CNRS 6240 LISA) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli], TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Sauveur Giannoni: LISA - Laboratoire « Lieux, Identités, eSpaces, Activités » (UMR CNRS 6240 LISA) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Daniel Brunstein: LISA - Laboratoire « Lieux, Identités, eSpaces, Activités » (UMR CNRS 6240 LISA) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Johan Jouve: LISA - Laboratoire « Lieux, Identités, eSpaces, Activités » (UMR CNRS 6240 LISA) - CNRS - Centre National de la Recherche Scientifique - Università di Corsica Pasquale Paoli [Université de Corse Pascal Paoli]
Post-Print from HAL
Abstract:
The literature on short-term rental emphasises the heterogeneity of the hosts population. Some argue that professional and opportunistic hosts differ in terms of their pricing strategy. This study highlights how differences in market perception and information create a price differential between professional and non-professional players. Proposing an original and accurate definition of professional hosts, we rely on a large dataset of almost 9,000 properties and 73,000 observations to investigate the pricing behaviour of Airbnb sellers in Corsica (France). Using OLS and the double-machine learning methods, we demonstrate that a price differential exists between professional and opportunistic sellers. In addition, we assess the impact of seasonality in demand on the size and direction of this price differential. We find that professionals perceive a higher degree of market power than others during the peak season and it allows them to enhance their revenues.
Keywords: Short-term rental; Pricing; Professionalism; Double machine learning; Seasonality; Market-power (search for similar items in EconPapers)
Date: 2022
New Economics Papers: this item is included in nep-ban, nep-big, nep-cmp, nep-com, nep-eur, nep-pay and nep-reg
Note: View the original document on HAL open archive server: https://hal.science/hal-03250484v1
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Published in Tourism Management, 2022, 88, ⟨10.1016/j.tourman.2021.104433⟩
Downloads: (external link)
https://hal.science/hal-03250484v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03250484
DOI: 10.1016/j.tourman.2021.104433
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().