Assessing the Sensitivity of Global Maize Price to Regional Productions Using Statistical and Machine Learning Methods
Évaluation de la sensibilité du prix mondial du maïs aux productions régionales à l'aide de méthodes statistiques et d'apprentissage automatique
Rotem Zelingher (),
David Makowski () and
Thierry Brunelle ()
Additional contact information
Rotem Zelingher: ECO-PUB - Economie Publique - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
David Makowski: MIA Paris-Saclay - Mathématiques et Informatique Appliquées - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thierry Brunelle: CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Agricultural price shocks strongly affect farmers' income and food security. It is therefore important to understand and anticipate their origins and occurrence, particularly for the world's main agricultural commodities. In this study, we assess the impacts of yearly variations in regional maize productions and yields on global maize prices using several statistical and machine-learning (ML) methods. Our results show that, of all regions considered, Northern America is by far the most influential. More specifically, our models reveal that a yearly yield gain of +8% in Northern America negatively impacts the global maize price by about –7%, while a decrease of –0.1% is expected to increase global maize price by more than +7%. Our classification models show that a small decrease in the maize yield in Northern America can inflate the probability of maize price increase on the global scale. The maize productions in the other regions have a much lower influence on the global price. Among the tested methods, random forest and gradient boosting perform better than linear models. Our results highlight the interest of ML in analyzing global prices of major commodities and reveal the strong sensitivity of maize prices to small variations of maize production in Northern America.
Keywords: Agricultural; commodity; prices (search for similar items in EconPapers)
Date: 2021-06-02
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03253794v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in Frontiers in Sustainable Food Systems, 2021, 5, ⟨10.3389/fsufs.2021.655206⟩
Downloads: (external link)
https://hal.inrae.fr/hal-03253794v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03253794
DOI: 10.3389/fsufs.2021.655206
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().