EconPapers    
Economics at your fingertips  
 

Assessing the Sensitivity of Global Maize Price to Regional Productions Using Statistical and Machine Learning Methods

Évaluation de la sensibilité du prix mondial du maïs aux productions régionales à l'aide de méthodes statistiques et d'apprentissage automatique

Rotem Zelingher (), David Makowski () and Thierry Brunelle ()
Additional contact information
Rotem Zelingher: ECO-PUB - Economie Publique - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
David Makowski: MIA Paris-Saclay - Mathématiques et Informatique Appliquées - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thierry Brunelle: CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École nationale des ponts et chaussées - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: Agricultural price shocks strongly affect farmers' income and food security. It is therefore important to understand and anticipate their origins and occurrence, particularly for the world's main agricultural commodities. In this study, we assess the impacts of yearly variations in regional maize productions and yields on global maize prices using several statistical and machine-learning (ML) methods. Our results show that, of all regions considered, Northern America is by far the most influential. More specifically, our models reveal that a yearly yield gain of +8% in Northern America negatively impacts the global maize price by about –7%, while a decrease of –0.1% is expected to increase global maize price by more than +7%. Our classification models show that a small decrease in the maize yield in Northern America can inflate the probability of maize price increase on the global scale. The maize productions in the other regions have a much lower influence on the global price. Among the tested methods, random forest and gradient boosting perform better than linear models. Our results highlight the interest of ML in analyzing global prices of major commodities and reveal the strong sensitivity of maize prices to small variations of maize production in Northern America.

Keywords: Agricultural; commodity; prices (search for similar items in EconPapers)
Date: 2021-06-02
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03253794v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in Frontiers in Sustainable Food Systems, 2021, 5, ⟨10.3389/fsufs.2021.655206⟩

Downloads: (external link)
https://hal.inrae.fr/hal-03253794v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03253794

DOI: 10.3389/fsufs.2021.655206

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03253794