Integral Operator Riccati Equations Arising in Stochastic Volterra Control Problems
Eduardo Abi Jaber (),
Enzo Miller and
Huyen Pham
Additional contact information
Eduardo Abi Jaber: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 UFR27 - Université Paris 1 Panthéon-Sorbonne - UFR Mathématiques & Informatique - UP1 - Université Paris 1 Panthéon-Sorbonne
Enzo Miller: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Huyen Pham: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité
Post-Print from HAL
Abstract:
We establish existence and uniqueness for infinite-dimensional Riccati equations taking values in the Banach space $L^1(\mu \otimes \mu)$ for certain signed matrix measures $\mu$ which are not necessarily finite. Such equations can be seen as the infinite-dimensional analogue of matrix Riccati equations, and they appear in the linear-quadratic control theory of stochastic Volterra equations.
Keywords: infinite-dimensional Lyapunov equation; integral operator Riccati equation; linear-quadratic control; stochastic Volterra equations (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Published in SIAM Journal on Control and Optimization, 2021, 59 (2), pp.1581-1603. ⟨10.1137/19M1298287⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03264893
DOI: 10.1137/19M1298287
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().