EconPapers    
Economics at your fingertips  
 

Nonparametric Model-Based Estimators for the Cumulative Distribution Function of a Right Censored Variable in a Small Area

Sandrine Casanova () and Eve Leconte ()
Additional contact information
Sandrine Casanova: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Eve Leconte: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Post-Print from HAL

Abstract: In survey analysis, the estimation of the cumulative distribution function (cdf) is of great interest as it facilitates the derivation of mean/median estimators for both populations and sub-populations (i.e. domains). We focus on small domains and consider the case where the response variable is right censored. Under this framework, we propose a nonparametric model-based estimator that extends the cdf estimator of Casanova (2012) to the censored case: it uses auxiliary information in the form of a continuous covariate and utilizes nonparametric quantile regression. We then employ simulations to compare the constructed estimator with the model-based cdf estimator of Casanova and Leconte (2015) and the Kaplan–Meier estimator (Kaplan and Meier 1958), both of which use only information contained within the domain: the quantile-based estimator performs better than the former two for very small domain sample sizes. Access times to the first job for young female graduates in the Occitania region are used to illustrate the new methodology.

Date: 2021-06
References: Add references at CitEc
Citations:

Published in Advances in Contemporary Statistics and Econometrics, Springer International Publishing, pp.47-57, 2021, 978-3-030-73248-6. ⟨10.1007/978-3-030-73249-3_3⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03299120

DOI: 10.1007/978-3-030-73249-3_3

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03299120