OneStep: Le Cam's One-step Estimation Procedure
Alexandre Brouste (),
Christophe Dutang () and
Darel Noutsa Mieniedou
Additional contact information
Alexandre Brouste: LMM - Laboratoire Manceau de Mathématiques - UM - Le Mans Université
Christophe Dutang: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Darel Noutsa Mieniedou: LMM - Laboratoire Manceau de Mathématiques - UM - Le Mans Université
Post-Print from HAL
Abstract:
The OneStep package proposes principally an eponymic function that numerically computes Le Cam's one-step estimator, which is asymptotically efficient and can be computed faster than the maximum likelihood estimator for large datasets. Monte Carlo simulations are carried out for several examples (discrete and continuous probability distributions) in order to exhibit the performance of Le Cam's one-step estimation procedure in terms of efficiency and computational cost on observation samples of finite size.
Date: 2021
Note: View the original document on HAL open archive server: https://hal.science/hal-03452455v1
References: Add references at CitEc
Citations:
Published in The R Journal, 2021, 13 (1), pp.366. ⟨10.32614/RJ-2021-044⟩
Downloads: (external link)
https://hal.science/hal-03452455v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03452455
DOI: 10.32614/RJ-2021-044
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().