Revisiting estimation methods for spatial econometric interaction models
Lukas Dargel
Additional contact information
Lukas Dargel: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, BVA Group
Post-Print from HAL
Abstract:
This article develops improved calculation techniques for estimating the spatial econometric interaction model of LeSage and Pace (2008) by maximum likelihood (MLE), Bayesian Markov Chain Monte Carlo (MCMC) and spatial two-stage least-squares (S2SLS). The refined estimation methods derive the parameter estimates and their standard errors exclusively from moment matrices with low dimensions. For the computation of these moments, we exploit efficiency gains linked to a matrix formulation of the model, which we generalize to make more flexible use of the exogenous variables. To improve the MLE we restructure the Hessian matrix and the quadratic term in the likelihood function. We also derive a moment based formulation of the Bayesian MCMC estimator from the same likelihood restructuring. Finally, the S2SLS estimator presented in this article is the first one to exploit the efficiency gains of the matrix formulation and also solves the problem of collinearity among spatial instruments. Several benchmarks show that these moment based estimators scale very well to large samples and can be used to estimate models with 100 million flows in just a few minutes. In addition to the improved estimation methods, this article presents a new way to define a feasible parameter space for the spatial econometric interaction model, which allows to verify the models consistency with a minimal computational burden. All of these developments indicate that the spatial econometric extension of the traditional gravity model has become an increasingly mature alternative and should eventually be considered a standard modeling approach for origin-destination flows.
Keywords: Origin-destination flows; Cross-sectional dependence; Maximum likelihood; Two-stage least-squares; Bayesian Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2021-10
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Published in Journal of Spatial Econometrics, 2021, 2 (10), pp.1-41. ⟨10.1007/s43071-021-00016-1⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03460656
DOI: 10.1007/s43071-021-00016-1
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().