EconPapers    
Economics at your fingertips  
 

Filtering time-dependent covariance matrices using time-independent eigenvalues

Christian Bongiorno (), Damien Challet and Grégoire Loeper
Additional contact information
Christian Bongiorno: MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay
Grégoire Loeper: BNP-Paribas

Post-Print from HAL

Abstract: We propose a data-driven way to clean covariance matrices in strongly nonstationary systems. Our method rests on long-term averaging of optimal eigenvalues obtained from temporally contiguous covariance matrices, which encodes the average influence of the future on present eigenvalues. This zero-th order approximation outperforms optimal methods designed for stationary systems.

Date: 2023-02-23
References: Add references at CitEc
Citations:

Published in Journal of Statistical Mechanics: Theory and Experiment, 2023, 2023 (2), pp.023402. ⟨10.1088/1742-5468/acb7ed⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03481441

DOI: 10.1088/1742-5468/acb7ed

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-22
Handle: RePEc:hal:journl:hal-03481441