EconPapers    
Economics at your fingertips  
 

Necessary conditions to a fractional variational problem

Melani Barrios (), Gabriela Reyero and Mabel Tidball
Additional contact information
Melani Barrios: Universidad Nacional de Rosario [Santa Fe]
Gabriela Reyero: Universidad Nacional de Rosario [Santa Fe]
Mabel Tidball: CEE-M - Centre d'Economie de l'Environnement - Montpellier - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement - UM - Université de Montpellier

Post-Print from HAL

Abstract: In order to solve fractional variational problems, there exist two theorems of necessary conditions: an Euler-Lagrange equation which involves Caputo and Riemann-Liouville fractional derivatives, and other Euler-Lagrange equation that involves only Caputo derivatives. In this article, we make a comparison solving a particular fractional variational problem with both methods to obtain some conclusions about which method gives the optimal solution.

Keywords: Fractional Derivatives and Integrals; Fractional Ordinary Differential Equations; Variational Problems Mathematics (search for similar items in EconPapers)
Date: 2022
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03549534v1
References: Add references at CitEc
Citations:

Published in Statistics, Optimization and Information Computing, 2022, 10 (2)

Downloads: (external link)
https://hal.inrae.fr/hal-03549534v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03549534

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03549534