EconPapers    
Economics at your fingertips  
 

Evaluating performance of super-efficiency models in ranking efficient decision-making units based on Monte Carlo simulations

Qiwei Xie, Linda Zhang, Haichao Shang, Ali Emrouznejad and Yongjun Li
Additional contact information
Qiwei Xie: School of Economics and Management, Beijing University of Technology
Linda Zhang: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Haichao Shang: School of Mathematics and Statistics, Hubei University, Wuhan
Ali Emrouznejad: Aston Business School, Aston University, Birmingham
Yongjun Li: School of Management, University of Science and Technology of China

Post-Print from HAL

Abstract: In response to the limitation of classical Data Envelopment Analysis (DEA) models, the super efficiency DEA models, including Andersen and Petersen (Manag Sci 39(10): 1261–1264, 1993)'s model (hereafter called AP model) and Li et al. (Eur J Oper Res 255(3): 884–892, 2016)'s cooperative-game-based model (hereafter called L–L model), have been proposed to rank efficient decision-making units (DMUs). Although both models have been widely applied in practice, there is a paucity of research examining the performance of the two models in ranking efficient DMUs. Consequently, it is unclear how close the rankings obtained by the two models are to the "true" ones. Among the very few studies, Banker et al. (Ann Oper Res 250(1): 21–35, 2017) pointed out that the ranking performance of the AP model is unsatisfactory; Li et al. (Eur J Oper Res 255(3): 884–892, 2016) and Hinojosa et al. (Exp Syst Appl 80(9): 273–283, 2017) demonstrated the L–L model's capability of ranking efficient DMUs without addressing the ranking performance. In this study, we, thus, examine the ranking performance of the two super-efficiency models. In evaluating their performance, we carry out Monte Carlo simulations based on the well-known Cobb–Douglas production function and adopt Kendall rank correlation coefficient. Unlike Banker et al. (Ann Oper Res 250(1): 21–35, 2017), we use the rankings obtained based on the two models and the "true" ones as the basis of performance evaluation in our simulations. Moreover, we consider several types of returns to scale (RS) and study the impact of changes of some parameters on the ranking performance. In view of the importance, we also carry out additional simulations to examine the influence of technical inefficiency on the two models' ranking performance. Based on the simulation results, we conclude: (1) Under different RS, the ranking performance of the two models remains the same when changing parameters, e.g., the distribution of input variables; (2) Under different RS, when technical inefficiency (in comparison with random noise) is more important, the two models have satisfactory performance by providing rankings that are close to, or the same as, the "true" ones; (3) The L–L model has better performance than the AP model and is more robust. This is especially true when technical inefficiency is less important; (4) Under different RS, when technical inefficiency is less important, both models have unsatisfactory ranking performance; and (5) The relative importance of technical inefficiency plays an prominent role in ranking efficient DMUs.

Keywords: Monte Carlo; Super efficiency; DEA; Ranking; Technical inefficiency; Returns to scale (search for similar items in EconPapers)
Date: 2021-10
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Published in Annals of Operations Research, 2021, 305 (1-2), pp.273-323. ⟨10.1007/s10479-021-04148-3⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03604012

DOI: 10.1007/s10479-021-04148-3

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03604012