EconPapers    
Economics at your fingertips  
 

Le masque, figure polaire de la crise de la Covid-19: une exploration par NLP du flux des conversations Twitter (février - mai 2020)

Sophie Balech (), Michel Calciu, Julien Monnot and Christophe Benavent ()
Additional contact information
Sophie Balech: CRIISEA - Centre de Recherche sur les Institutions, l'Industrie et les Systèmes Économiques d'Amiens - UR UPJV 3908 - UPJV - Université de Picardie Jules Verne
Michel Calciu: IAE Lille - IAE Lille University School of Management - Lille - Université de Lille
Julien Monnot: CEROS - Centre d'Etudes et de Recherches sur les Organisations et la Stratégie - UPN - Université Paris Nanterre
Christophe Benavent: DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: The Covid-19 pandemic that has hit the planet offers a spectacular case study in disaster management. In this literature, the participatory paradigm is fundamental: the mitigation of the impact of the disaster, the quality of the preparation and the resilience of the society, facilitate reconstruction, but depend on the participation of populations. Being able to observe and measure the mental health of populations (anxiety, confidence, hopes, etc.), identifying points of controversy and the content of the discourse, remain necessary to accompany measures to encourage this participation. Social media, and in particular Twitter, offer valuable resources for exploring this discourse. The main result is based on the identification of the centrality of the mask figure and aims to establish the importance of the phenomenon. We show this quantitatively, and explore the concept using NLP methods. The background is a major change in the understanding of the crisis. If, at the beginning of the cycle, it is perceived in an exotic way, it then becomes endemic to the social body. We exploit here a database of 2.1 million tweets extracted from a corpus of 110 million, elaborated by an international information science team and dealing with the variants of #Covid-19, #coronavirus, etc: the Covid-19 Twitter data set.

Keywords: mesure de l’opinion; Disaster management; semantic networks; Social media; crisis management; Gestion des catastrophes; réseaux sémantiques; Médias sociaux; Gestion de crise (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Published in Marché et Organisations, 2022, 43 (1), ⟨10.3917/maorg.043.0151⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03653198

DOI: 10.3917/maorg.043.0151

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03653198