False Information from Near and Far
Christophe Bravard (),
Jacques Durieu (),
Sudipta Sarangi and
Stéphan Sémirat ()
Additional contact information
Christophe Bravard: GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Jacques Durieu: CREG - Centre de recherche en économie de Grenoble - UGA - Université Grenoble Alpes, GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Stéphan Sémirat: GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Post-Print from HAL
Abstract:
We study message credibility in social networks with biased and unbiased agents. Biased agents prefer a specific outcome while unbiased agents prefer the true state of the world. Each agent who receives a message knows the identity (but not type) of the message creator and only the identity and types of their immediate neighbors. We characterize the perfect Bayesian equilibria of this game and demonstrate filtering by the network: the posterior beliefs of agents depend on the distance a message travels. Unbiased agents, who receive a message from a biased agent, are more likely to assign a higher credibility and transmit it further when they are further away from the source. For a given network, we compute the probability that it will always support the communication of messages by unbiased agents. Finally, we establish that under certain parameters, this probability increases when agents are uncertain about their network location.
Keywords: Influential Players; Filter; Network (search for similar items in EconPapers)
Date: 2023
New Economics Papers: this item is included in nep-gth, nep-mic and nep-net
Note: View the original document on HAL open archive server: https://hal.science/hal-03850289v1
References: Add references at CitEc
Citations:
Published in Games and Economic Behavior, 2023, 137, pp.152-174. ⟨10.1016/j.geb.2022.11.002⟩
Downloads: (external link)
https://hal.science/hal-03850289v1/document (application/pdf)
Related works:
Journal Article: False information from near and far (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03850289
DOI: 10.1016/j.geb.2022.11.002
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().