EconPapers    
Economics at your fingertips  
 

Fully automatic multigrid adaptive mesh refinement strategy with controlled accuracy for nonlinear quasi-static problems

Daria Koliesnikova, Isabelle Ramière () and Frédéric Lebon ()
Additional contact information
Daria Koliesnikova: LSC - Laboratoire de Simulation du Comportement des Combustibles - SESC - Service d'Etudes de Simulation du Comportement du combustibles - DEC - Département d'Etudes des Combustibles - IRESNE - Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Isabelle Ramière: LSC - Laboratoire de Simulation du Comportement des Combustibles - SESC - Service d'Etudes de Simulation du Comportement du combustibles - DEC - Département d'Etudes des Combustibles - IRESNE - Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives
Frédéric Lebon: LMA - Laboratoire de Mécanique et d'Acoustique [Marseille] - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: We propose an adaptive mesh refinement (AMR) algorithm dedicated to the simulation of nonlinear quasi-static solid mechanics problems with complex local phenomena at the structural scale. The proposed method allows us to follow in time the evolution of studied phenomena in a fully-automatic (based on error estimators), precise (respecting user-prescribed accuracies) and efficient (in terms of memory space and computational time) way. This algorithm is based on the multilevel Local Defect Correction (LDC) refinement approach. We first introduce an algorithmic extension of the LDC method to nonlinear quasi-static problems and provide key aspects associated with its practical implementation. Generic still open AMR-related questions associated with dynamic mesh adaptation, such as fields transfer between time steps and discretization error control over time, are then addressed. We propose a straightforward and efficient error non accumulation strategy lying on the introduction of the unbalance residual as an initial source term of the problem. Moreover, a reliable remeshing algorithm is introduced, aiming to limit the number of mesh regenerations over time while guaranteeing the fulfillment of user-prescribed errors. The efficiency of the proposed algorithm is demonstrated on several numerical experiments, in and , with different types of material behavior as well as evolving loads. Thanks to its natural ability to generate a hierarchy of meshes of limited sizes that dynamically follow the evolution over time of studied phenomena, the proposed extension of the LDC method clearly appears to be of great potential for many challenging applications.

Keywords: Adaptive mesh refinement; Local multigrid method; Nonlinear solids mechanics; Field transfer; Error control; All-quadrilateral and all-hexahedral mesh (search for similar items in EconPapers)
Date: 2022-10
References: Add references at CitEc
Citations:

Published in Computer Methods in Applied Mechanics and Engineering, 2022, 400, pp.115505. ⟨10.1016/j.cma.2022.115505⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03887791

DOI: 10.1016/j.cma.2022.115505

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-25
Handle: RePEc:hal:journl:hal-03887791