Interactions between ecosystem services and land use in France: A spatial statistical analysis
Interactions entre les services écosystémiques et l'utilisation des terres en France: une analyse statistique spatiale
Issam-Ali Moindjié,
Corentin Pinsard (),
Francesco Accatino () and
Raja Chakir
Additional contact information
Issam-Ali Moindjié: LPP - Laboratoire Paul Painlevé - UMR 8524 - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Corentin Pinsard: SADAPT - Sciences pour l'Action et le Développement : Activités, Produits, Territoires - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Francesco Accatino: SADAPT - Sciences pour l'Action et le Développement : Activités, Produits, Territoires - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
The provision of ecosystem services (ESs) is driven by land use and biophysical conditions and is thus intrinsically linked to space. Large-scale ES models, developed to inform policy makers on ES drivers, do not usually consider spatial autocorrelation that could be inherent to the distribution of these ESs or to the modeling process. The objective of this study is to estimate the drivers of ecosystem services in France using statistical models and show how taking into account spatial autocorrelation improves the predictive quality of these models. We study six regulating ESs (habitat quality index, water retention index, topsoil organic matter, carbon storage, soil erosion control, and nitrogen oxide deposition velocity) and three provisioning ESs (crop production, grazing livestock density, and timber removal). For each of these ESs, we estimated and compared five spatial statistical models to investigate the best specification (using statistical tests and goodness-of-fit metrics). Our results show that (1) taking into account spatial autocorrelation improves the predictive accuracy of all ES models (Δ R 2 ranging from 0.13 to 0.58); (2) land use and biophysical variables (weather and soil texture) are significant drivers of most ESs; (3) forest was the most balanced land use for provision of a diversity of ESs compared to other land uses (agriculture, pasture, urban, and others); (4) Urban area is the worst land use for provision of most ESs. Our findings imply that further studies need to consider spatial autocorrelation of ESs in land use change and optimization scenario simulations.
Date: 2022-10-10
New Economics Papers: this item is included in nep-agr and nep-env
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03890135v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Frontiers in Environmental Science, 2022, 10, pp.954655. ⟨10.3389/fenvs.2022.954655⟩
Downloads: (external link)
https://hal.inrae.fr/hal-03890135v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03890135
DOI: 10.3389/fenvs.2022.954655
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().