SISTA: Learning Optimal Transport Costs under Sparsity Constraints
Guillaume Carlier,
Arnaud Dupuy,
Alfred Galichon () and
Yifei Sun
Additional contact information
Guillaume Carlier: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique, Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres, MOKAPLAN - Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales - CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique
Arnaud Dupuy: uni.lu - Université du Luxembourg = University of Luxembourg = Universität Luxemburg
Alfred Galichon: CIMS - Courant Institute of Mathematical Sciences [New York] - NYU - New York University [New York] - NYU - NYU System, ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique
Yifei Sun: CIMS - Courant Institute of Mathematical Sciences [New York] - NYU - New York University [New York] - NYU - NYU System
Post-Print from HAL
Abstract:
In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent ("S"-inkhorn) and proximal gradient descent ("ISTA"). It alternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences. © 2022 Wiley Periodicals LLC.
Keywords: Inverse optimal transport; Coordinate descent; ISTA (search for similar items in EconPapers)
Date: 2022-03-20
References: Add references at CitEc
Citations:
Published in Communications on Pure and Applied Mathematics, 2022, 76 (9), pp.1659-1677. ⟨10.1002/cpa.22047⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03893060
DOI: 10.1002/cpa.22047
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().