EconPapers    
Economics at your fingertips  
 

Estimating a model of herding behavior on social networks

Maxime L.D. Nicolas
Additional contact information
Maxime L.D. Nicolas: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 - Université Paris 1 Panthéon-Sorbonne

Post-Print from HAL

Abstract: In this paper, we estimate an agent-based model (ABM) to investigate herding behaviors in the formation of investor sentiment. We formalize a simple opinion dynamics model in a social network framework and rely on a numerical method to estimate its parameters. We derive a sentiment proxy from the weekly aggregation of online messages concerning 15 US stocks and 5 cryptocurrencies. Our empirical results suggest a strong impact of herding behavior on the formation of sentiment toward highly volatile assets. For such assets, we simultaneously find limited impacts of financial returns and investor attention on the opinion formation process, suggesting that investor sentiment is explained by social interactions. On the other hand, we find a limited influence of social interactions on sentiment regarding less volatile assets, whose formation process is instead explained by the strong influence of financial returns and investor attention. In particular, we find that herding behavior was significantly higher and played a major role in the sentiment formation process regarding cryptocurrencies when the bubble occurred.

Keywords: Agent-based model; Investor sentiment; Herding behavior; Social network (search for similar items in EconPapers)
Date: 2022-10
References: Add references at CitEc
Citations:

Published in Physica A: Statistical Mechanics and its Applications, 2022, 604, pp.127884. ⟨10.1016/j.physa.2022.127884⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03948466

DOI: 10.1016/j.physa.2022.127884

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03948466