Does it pay off to communicate like your online community? Evaluating the effect of content and linguistic style similarity on B2B brand engagement
Matthijs Meire,
Kristof Coussement (),
Arno de Caigny () and
Steven Hoornaert
Additional contact information
Matthijs Meire: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Kristof Coussement: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Arno de Caigny: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Steven Hoornaert: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Business-to-business (B2B) social media efforts have largely focused on creating brand engagement through online content. We propose to analyse company social media texts (tweets) according to its two main dimensions, content and linguistic style, and to evaluate these in comparison to the overall content and style of the company's community of Twitter followers. We combine 15 million tweets originating from 254,884 followers of ten company profiles and link these to 10,589 B2B company tweets. Using advanced text analytics, we show that content similarity has positive effects on all engagement metrics, while linguistic style similarity mainly affects likes. Readability acts as a moderator for these effects. We also find a negative interaction effect between the similarity metrics, such that style similarity is most useful if content similarity is low. This research is the first to integrate content and linguistic style similarity and contributes to the brand engagement literature by providing practical message composition guidelines, informed by the social media community.
Keywords: Social media; B2B; Brand engagement; Linguistic style matching; Content matching; Text analytics (search for similar items in EconPapers)
Date: 2022-10
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Published in Industrial Marketing Management, 2022, 106, pp.292-307. ⟨10.1016/j.indmarman.2022.09.006⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03976744
DOI: 10.1016/j.indmarman.2022.09.006
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().