Gini and Optimal Income Taxation by Rank
Laurent Simula and
Alain Trannoy
Additional contact information
Laurent Simula: ENS de Lyon - École normale supérieure de Lyon - Université de Lyon, GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique
Alain Trannoy: AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We solve the nonlinear income tax program for rank-dependent social welfare functions, expressing the trade-off between size and inequality using the Gini and related families of positional indices. Absent bunching, ranks in the actual and optimal allocations are invariant. Exploiting this feature, we provide new, simple, and intuitive tax formulas for both the quasilinear and additive cases and new comparative static results. Our approach makes insights from optimal taxation more widely accessible. In some of our simulations the actual US tax policy is close to being optimal—except at the top, where optimal rates are much higher than in actuality.
Date: 2022-08-01
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Published in American Economic Journal: Economic Policy, 2022, 14 (3), pp.352-379. ⟨10.1257/pol.20200272⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04000868
DOI: 10.1257/pol.20200272
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().