Long-Term Planning of Electrical Distribution Grids: How Load Uncertainty and Flexibility Affect the Investment Timing
Marie-Cécile Alvarez-Hérault (),
Jean-Pierre Dib,
Oana Ionescu () and
Bertrand Raison
Additional contact information
Marie-Cécile Alvarez-Hérault: G2Elab-SYREL - G2Elab-SYstèmes et Réseaux ELectriques - G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Jean-Pierre Dib: G2Elab-SYREL - G2Elab-SYstèmes et Réseaux ELectriques - G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Oana Ionescu: GAEL - Laboratoire d'Economie Appliquée de Grenoble - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, G2Elab-SYREL - G2Elab-SYstèmes et Réseaux ELectriques - G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Bertrand Raison: G2Elab-SYREL - G2Elab-SYstèmes et Réseaux ELectriques - G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, G2ELab - Laboratoire de Génie Electrique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Post-Print from HAL
Abstract:
Due to the rise of smart grids, new players and services are emerging and can have an impact on the decision-making process in distribution networks, which, over the past decades, were only driven by linear demand growth with a low level of uncertainties. Nowadays, the evolution of distribution networks and investment decisions (conductors and transformers) can no longer be based solely on deterministic assumptions of load evolution since there is a high level of uncertainties related to the development of electrical loads such as electric vehicles. In this paper, we focus on the uncertainty of the peak power, key elements for triggering an investment, and the flexibility to choose between different topologies of electric networks. To solve this problem, we apply a real option approach and provide an analytical model with closed-form solutions that allows a full treatment of the dynamic aspects of the decision to reconsider the topology of the network. Moreover, through a comparative statics analysis, we infer the sensitivity of the option value to modify the network with respect to the volatility of the peak power, the associated investment cost or other types of costs of power losses, the growth rate, or the discount rate.
Keywords: Real options; Distribution network; Irreversible investment; Uncertainty (search for similar items in EconPapers)
Date: 2022
Note: View the original document on HAL open archive server: https://hal.science/hal-04051093v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Energies, 2022, 15 (16), pp.6084. ⟨10.3390/en15166084⟩
Downloads: (external link)
https://hal.science/hal-04051093v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04051093
DOI: 10.3390/en15166084
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().