EconPapers    
Economics at your fingertips  
 

Lava flow hazard of the 2018 Etna eruption: What happened and what could happen

Giuseppe Bilotta, Sonia Calvari, Annalisa Cappello, Claudia Corradino, Ciro del Negro, Gaetana Ganci and Alexis Hérault
Additional contact information
Giuseppe Bilotta: INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia
Sonia Calvari: INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia
Annalisa Cappello: INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia
Claudia Corradino: INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia
Ciro del Negro: INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia
Gaetana Ganci: INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia
Alexis Hérault: M2N - Modélisation mathématique et numérique - CNAM - Conservatoire National des Arts et Métiers [CNAM], INGV - Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania - Istituto Nazionale di Geofisica e Vulcanologia

Post-Print from HAL

Abstract: On 24 December 2018 a flank eruption started on Etna from an eruptive fissure opened on the eastern side of the New Southeast Crater (NCSE) at about 3,100 m asl, which in few minutes, propagated to the south-east, overcoming the edge of the western wall of the Valle del Bove (VdB), reaching an altitude of 2,400 m asl and a total length of about 2 km. The eruption, which lasted only three days, produced lava flows from different vents along the eruptive fissure that reached a distance of about 4.2 km and covered an area of about 1 km2. The satellite monitoring of the 2018 Etna eruption was performed using the HOTSAT system using mid and thermal infrared data acquired by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), which provided minimum and maximum estimates for the lava thermal flux, the effusion rate and the lava volume. The SEVIRI-derived effusion rate estimates were used as input of the MAGFLOW model to simulate the actual lava flow field, obtaining a very good fit. We also simulated different eruptive scenarios assuming the lava emission wouldn't run out in only three days to forecast if, when and how the lava flow could reach the inhabited areas, causing possible significant damage.

Date: 2021-04-19
References: Add references at CitEc
Citations:

Published in 23rd EGU General Assembly, Apr 2021, Online, France. ⟨10.5194/egusphere-egu21-4448⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04101972

DOI: 10.5194/egusphere-egu21-4448

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-04101972