EconPapers    
Economics at your fingertips  
 

Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry

Quentin Plantec, Marie-Alix Deval, Sophie Hooge () and Benoit Weil ()
Additional contact information
Quentin Plantec: TBS - Toulouse Business School
Marie-Alix Deval: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique
Sophie Hooge: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique
Benoit Weil: CGS i3 - Centre de Gestion Scientifique i3 - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: In traditional industries, such as the automotive industry, incumbents must draw on big data and artificial intelligence (AI) technologies by designing AI-embedded systems integrated into their end products. While such systems are predominantly presented as paving the way for new knowledge explorative approaches, traditional industry incumbents may face challenges integrating such disruptive technology in their optimized new product development processes. Hence, this study investigates the extent to which incumbents innovate through the design of AI-embedded systems—either via explorative or exploitative strategies—by focusing on the case of the automotive industry. It employed a sequential explanatory mixed-method design and a knowledge search theoretical framework. A quantitative analysis of 46,145 patents from the top 19 traditional companies to identify AI and non-AI patents revealed that firms primarily rely on knowledge exploitation when designing and integrating AI-embedded systems, surprisingly fostering innovativeness. Complementary qualitative insights reveal that big data and AI technologies are integrated into the industrialization phase of new vehicle development, per a creative problem-solving patch. Notably, this study's findings reveal the technical and organizational challenges limiting data-driven innovation, thereby paving a way for more technologically original innovation with big data and AI.

Keywords: Big data; AI technologies; Automotive industry; Digital transformation; Mixed-method (search for similar items in EconPapers)
Date: 2023-06
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Published in Technovation, 2023, 124, pp.102763. ⟨10.1016/j.technovation.2023.102763⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04254146

DOI: 10.1016/j.technovation.2023.102763

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-04254146