A decision support framework to incorporate textual data for early student dropout prediction in higher education
Minh Phan,
Arno de Caigny () and
Kristof Coussement ()
Additional contact information
Minh Phan: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Arno de Caigny: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Kristof Coussement: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Managing student dropout in higher education is critical, considering its substantial impacts on students' lives, academic institutions, and society as a whole. Using predictive modeling can be instrumental for this task, as a means to identify dropouts proactively on the basis of student characteristics and their academic performance. To enhance these predictions, textual student feedback also might be relevant; this article proposes a hybrid decision support framework that combines predictive modeling with student segmentation efforts. A real-life data set from a French higher education institution, containing information of 14,391 students and 62,545 feedback documents, confirms the superior performance of the proposed framework, in terms of the area under the curve and top decile lift, compared with various benchmarks. In contributing to decision support system research, this study (1) proposes a new framework for automatic, data-driven segmentation of students based on textual data; (2) compares multiple text representation methods and confirms that incorporating student textual feedback data improves the predictive performance of student dropout models; and (3) establishes useful insights to help decision-makers anticipate and manage student dropout behaviors.
Date: 2023-05-01
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Published in Decision Support Systems, 2023, 168 (C), pp.113940. ⟨10.1016/j.dss.2023.113940⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04274684
DOI: 10.1016/j.dss.2023.113940
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().