VS-LTGARCHX: A Flexible Variable Selection in Log-TGARCHX Models
Samir Orujov,
Victor Elvira (),
Audrey Poterie (),
Farid Rajabov and
Francois Septier ()
Additional contact information
Samir Orujov: LMBA - Laboratoire de Mathématiques de Bretagne Atlantique - UBS - Université de Bretagne Sud - UBO EPE - Université de Brest - CNRS - Centre National de la Recherche Scientifique
Victor Elvira: The University of Edinburgh, Institut TELECOM/TELECOM Lille1 - IMT - Institut Mines-Télécom [Paris], CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Audrey Poterie: LMBA - Laboratoire de Mathématiques de Bretagne Atlantique - UBS - Université de Bretagne Sud - UBO EPE - Université de Brest - CNRS - Centre National de la Recherche Scientifique
Farid Rajabov: UCL - University College London [UCL]
Francois Septier: LMBA - Laboratoire de Mathématiques de Bretagne Atlantique - UBS - Université de Bretagne Sud - UBO EPE - Université de Brest - CNRS - Centre National de la Recherche Scientifique, UBS - Université de Bretagne Sud
Post-Print from HAL
Abstract:
The log-TGARCHX model is less restrictive in terms of the inclusion of exogenous variables and asymmetry lags compared to the GARCHX model. Nevertheless, adding less (or more) covariates than necessary may lead to under- or overfitting, respectively. In this context, we propose a new algorithm, called VS-LTGARCHX, which incorporates a variable selection procedure into the log-TGARCHX estimation process. Furthermore, the VS-LTGARCHX algorithm is applied to extremely volatile BTC markets using 42 conditioning variables. Interestingly, our results show that the VS-LTGARCHX models outperform benchmark models, namely the log-GARCH(1,1) and log-TGARCHX(1,1) models, in one-step-ahead forecasting.
Keywords: variable selection; Bitcoin volatility; log-GARCHX; GARCH (search for similar items in EconPapers)
Date: 2025-05-16
Note: View the original document on HAL open archive server: https://hal.science/hal-04283159v2
References: Add references at CitEc
Citations:
Published in Journal of Time Series Econometrics, 2025, pp.1-34. ⟨10.1515/jtse-2023-0035⟩
Downloads: (external link)
https://hal.science/hal-04283159v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04283159
DOI: 10.1515/jtse-2023-0035
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().