Transforming weed management in sustainable agriculture with artificial intelligence: a systematic literature review towards weed identification and deep learning
Marios Vasileiou (),
Leonidas Sotirios Kyrgiakos,
Christina Kleisiari (),
Georgios Kleftodimos (),
George Vlontzos (),
Hatem Belhouchette () and
Panos Pardalos
Additional contact information
Marios Vasileiou: Department of Agriculture Crop Production and Rural Environment [Volos] - UTH - University of Thessaly [Volos]
Leonidas Sotirios Kyrgiakos: Department of Agriculture Crop Production and Rural Environment [Volos] - UTH - University of Thessaly [Volos]
Christina Kleisiari: Department of Agriculture Crop Production and Rural Environment [Volos] - UTH - University of Thessaly [Volos]
Georgios Kleftodimos: CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes, UMR MoISA - Montpellier Interdisciplinary center on Sustainable Agri-food systems (Social and nutritional sciences) - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - IRD - Institut de Recherche pour le Développement - CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement
George Vlontzos: Department of Agriculture Crop Production and Rural Environment [Volos] - UTH - University of Thessaly [Volos]
Hatem Belhouchette: CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes, UMR ABSys - Agrosystèmes Biodiversifiés - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Montpellier - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement
Panos Pardalos: UF - University of Florida [Gainesville]
Post-Print from HAL
Abstract:
Highlights: • AI in weed management potentials for transforming agricultural ecosystems. • AI influence in economic, social, technological, and environmental dimensions. • AI's role in enhancing food safety by reducing pesticides residues. • Digital literacy as a crucial enabler empowering stakeholders to use AI effectively. Abstract: In the face of increasing agricultural demands and environmental concerns, the effective management of weeds presents a pressing challenge in modern agriculture. Weeds not only compete with crops for resources but also pose threats to food safety and agricultural sustainability through the indiscriminate use of herbicides, which can lead to environmental contamination and herbicide-resistant weed populations. Artificial Intelligence (AI) has ushered in a paradigm shift in agriculture, particularly in the domain of weed management. AI's utilization in this domain extends beyond mere innovation, offering precise and eco-friendly solutions for the identification and control of weeds, thereby addressing critical agricultural challenges. This article aims to examine the application of AI in weed management in the context of weed detection and the increasing impact of deep learning techniques in the agricultural sector. Through an assessment of research articles, this study identifies critical factors influencing the adoption and implementation of AI in weed management. These criteria encompass factors of AI adoption (food safety, increased effectiveness, and eco-friendliness through herbicides reduction), AI implementation factors (capture technology, training datasets, AI models, and outcomes and accuracy), ancillary technologies (IoT, UAV, field robots, and herbicides), and the related impact of AI methods adoption (economic, social, technological, and environmental). Of the 5821 documents found, 99 full-text articles were assessed, and 68 were included in this study. The review highlights AI's role in enhancing food safety by reducing herbicide residues, increasing effectiveness in weed control strategies, and promoting eco-friendliness through judicious herbicide use. It underscores the importance of capture technology, training datasets, AI models, and accuracy metrics in AI implementation, emphasizing their synergy in revolutionizing weed management practices. Ancillary technologies, such as IoT, UAVs, field robots, and AI-enhanced herbicides, complement AI's capabilities, offering holistic and data-driven approaches to weed control. Additionally, the adoption of AI methods influences economic, social, technological, and environmental dimensions of agriculture. Last but not least, digital literacy emerges as a crucial enabler, empowering stakeholders to navigate AI technologies effectively and contribute to the sustainable transformation of weed management practices in agriculture.
Keywords: WEEDS; GRASS COVER; PESTICIDE RESIDUES; HERBICIDES; PRECISION AGRICULTURE; ARTIFICIAL INTELLIGENCE; LITERATURE; APPRENTICESHIP; CONTROL METHODS; SUSTAINABILITY; AGROECOLOGY; MAUVAISE HERBE; ENHERBEMENT; RESIDU DE PESTICIDE; HERBICIDE; AGRICULTURE DE PRECISION; INTELLIGENCE ARTIFICIELLE; LITTERATURE; APPRENTISSAGE; METHODE DE LUTTE; DURABILITE; AGROECOLOGIE (search for similar items in EconPapers)
Date: 2024-02
New Economics Papers: this item is included in nep-agr, nep-big and nep-env
Note: View the original document on HAL open archive server: https://hal-ciheam.iamm.fr/hal-04297703v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Crop Protection, 2024, 176, pp.106522. ⟨10.1016/j.cropro.2023.106522⟩
Downloads: (external link)
https://hal-ciheam.iamm.fr/hal-04297703v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04297703
DOI: 10.1016/j.cropro.2023.106522
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().