EconPapers    
Economics at your fingertips  
 

Les indices de concentration géographique à l’épreuve de l’agrégation des données

Emmanuel Auvray and Salima Bouayad-Agha ()
Additional contact information
Emmanuel Auvray: GAINS - ARGUMANS - Atelier De Recherche En Gestion De L'université Du Mans - GAINS - Groupe d'Analyse des Itinéraires et des Niveaux Salariaux - UM - Le Mans Université, TEPP - Travail, Emploi et Politiques Publiques - UPEM - Université Paris-Est Marne-la-Vallée - CNRS - Centre National de la Recherche Scientifique
Salima Bouayad-Agha: GAINS - ARGUMANS - Atelier De Recherche En Gestion De L'université Du Mans - GAINS - Groupe d'Analyse des Itinéraires et des Niveaux Salariaux - UM - Le Mans Université, TEPP - Travail, Emploi et Politiques Publiques - UPEM - Université Paris-Est Marne-la-Vallée - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: To characterise the spatial concentration of economic activities, reliable statistical measures are needed. This allows assessment of existing disparities and comparison of concentration levels by sector in time and space. Space is continuous but its discretisation due to spatial grouping of observations at different geographical scales (municipalities, départements, regions) can induce a measurement error (Briant et alii, 2010), thus affecting the representation of the concentration. Since it is not always possible to utilise the exact position of the entities, this work proposes to study, from simulated data, the extent to which the most commonly used indices of geographic concentration of activities can be biased by geographical aggregation. We showthat index values are sensitive to the geographical scale on which they are calculated and that some indices are more robust than others to geographic aggregation.

Keywords: Concentration; Agglomération; Statistiques spatiales; problème d'agrégation spatiale (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Published in Economie et Prévision, 2019, 216 (2), pp.1-20. ⟨10.3406/ecop.2019.8261⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04302098

DOI: 10.3406/ecop.2019.8261

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-04302098