Mapping distributions in non-homogeneous space with distance-based methods
Cartographie des distributions dans un espace non homogène à l'aide de méthodes basées sur la distance
Éric Marcon () and
Florence Puech ()
Additional contact information
Éric Marcon: UMR AMAP - Botanique et Modélisation de l'Architecture des Plantes et des Végétations - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - CNRS - Centre National de la Recherche Scientifique - IRD [Occitanie] - Institut de Recherche pour le Développement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UM - Université de Montpellier, UMR ECOFOG - Ecologie des forêts de Guyane - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - AgroParisTech - UG - Université de Guyane - CNRS - Centre National de la Recherche Scientifique - UA - Université des Antilles - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Florence Puech: UMR PSAE - Paris-Saclay Applied Economics - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
Distance-based methods (DBMs) are frequently used to analyze spatial structures in economics. Results provided by DBMs are particularly effective for the precise detection of spatial concentration, dispersion or absence of significant patterns at any scale. The utility of plotting the results of DBMs in homogeneous space has already been shown. However, no consideration has been given to mapping results in non-homogeneous space. This paper aims to fill this gap. We provide a technique to map local values when using a relative DBM. We illustrate its advantages at first on a theoretical case and then on a real case drawing on contagious disease data on trees in a Parisian park. Data and R code are given for reproducible research. In both cases, we show that local plotting can enable a more accurate spatial characterization of the underlying patterns. To give an example, our empirical results on infested maple trees support evidence of the existence of a contagion disease because they appear to be located in areas where maples are relatively spatially concentrated.
Keywords: Distance-based method; M-functions; Spatial structure; Spatial distribution; Parisian trees; Contagion (search for similar items in EconPapers)
Date: 2023-12-05
Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-04345149v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Journal of Spatial Econometrics, 2023, 4, pp.13. ⟨10.1007/s43071-023-00042-1⟩
Downloads: (external link)
https://hal.inrae.fr/hal-04345149v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04345149
DOI: 10.1007/s43071-023-00042-1
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().