Adaptation of Residential Buildings to Coastal Floods: Strategies, Costs and Efficiency
Axel Creach (),
Emilio Bastidas-Arteaga,
Sophie Pardo () and
Denis Mercier ()
Additional contact information
Axel Creach: LGP - Laboratoire de géographie physique : Environnements Quaternaires et Actuels - UP1 - Université Paris 1 Panthéon-Sorbonne - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique
Emilio Bastidas-Arteaga: TRUST - Contrôle de santé fiabilité et calcul des structures - GeM - Institut de Recherche en Génie Civil et Mécanique - UN UFR ST - Université de Nantes - UFR des Sciences et des Techniques - UN - Université de Nantes - ECN - École Centrale de Nantes - CNRS - Centre National de la Recherche Scientifique
Sophie Pardo: LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes
Denis Mercier: LGP - Laboratoire de géographie physique : Environnements Quaternaires et Actuels - UP1 - Université Paris 1 Panthéon-Sorbonne - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
As the first defence to the natural environment, residential buildings are responsible for protecting human lives and assets in society. Nevertheless, some residential buildings in coastal areas are located in places where the population is exposed to the risk of drowning. Rise in the sea level due to climate change could increase these risks. Therefore, this chapter presents and discusses a framework for estimating the cost-effectiveness of adaptation strategies for buildings subjected to coastal floods. The chapter first describes the Vulnérabilité Intrinsèque Extrême (VIE) or Extreme Inherent Vulnerability index, which is a useful tool to identify the buildings where people could be trapped and drowned during floods. Afterwards, four adaptation strategies are presented and discussed focusing on their costs and effects on the VIE index. Finally, two case studies illustrate how the framework could help the decision-makers to compare or combine the adaptation strategies in a cost-effective way.
Date: 2019
Note: View the original document on HAL open archive server: https://hal.science/hal-04467886v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Emilio Bastidas-Arteaga; Mark G. Stewar. Climate Adaptation Engineering. Risks and Economics for Infrastructure Decision-Making, Elsevier, pp.245-270, 2019, 978-0-12-816782-3. ⟨10.1016/b978-0-12-816782-3.00008-5⟩
Downloads: (external link)
https://hal.science/hal-04467886v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04467886
DOI: 10.1016/b978-0-12-816782-3.00008-5
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().