EconPapers    
Economics at your fingertips  
 

Interpretable Machine Learning Using Partial Linear Models*

Emmanuel Flachaire, Sullivan Hué, Sébastien Laurent () and Gilles Hacheme
Additional contact information
Emmanuel Flachaire: AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique
Sébastien Laurent: AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique, AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, Aix-Marseille Graduate School of Management
Gilles Hacheme: AMU - Aix Marseille Université, CNRS - Centre National de la Recherche Scientifique, AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: Despite their high predictive performance, random forest and gradient boosting are often considered as black boxes which has raised concerns from practitioners and regulators. As an alternative, we suggest using partial linear models that are inherently interpretable. Specifically, we propose to combine parametric and non‐parametric functions to accurately capture linearities and non‐linearities prevailing between dependent and explanatory variables, and a variable selection procedure to control for overfitting issues. Estimation relies on a two‐step procedure building upon the double residual method. We illustrate the predictive performance and interpretability of our approach on a regression problem.

Keywords: Machine leaning; Lasso; Autometrics; GAM (search for similar items in EconPapers)
Date: 2023-12-28
Note: View the original document on HAL open archive server: https://hal.science/hal-04529011v1
References: Add references at CitEc
Citations:

Published in Oxford Bulletin of Economics and Statistics, 2023, ⟨10.1111/obes.12592⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: Interpretable Machine Learning Using Partial Linear Models (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04529011

DOI: 10.1111/obes.12592

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-22
Handle: RePEc:hal:journl:hal-04529011