Industry-sensitive language modeling for business
Philipp Borchert,
Kristof Coussement (),
Jochen de Weerdt and
Arno de Caigny ()
Additional contact information
Philipp Borchert: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Kristof Coussement: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Jochen de Weerdt: KU Leuven - Catholic University of Leuven = Katholieke Universiteit Leuven
Arno de Caigny: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We introduce BusinessBERT, a new industry-sensitive language model for business applications. The key novelty of our model lies in incorporating industry information to enhance decision-making in business-related natural language processing (NLP) tasks. BusinessBERT extends the Bidirectional Encoder Representations from Transformers (BERT) architecture by embedding industry information during pretraining through two innovative approaches that enable BusinessBert to capture industry-specific terminology: (1) BusinessBERT is trained on business communication corpora totaling 2.23 billion tokens consisting of company website content, MD&A statements and scientific papers in the business domain; (2) we employ industry classification as an additional pretraining objective. Our results suggest that BusinessBERT improves data-driven decision-making by providing superior performance on business-related NLP tasks. Our experiments cover 7 benchmark datasets that include text classification, named entity recognition, sentiment analysis, and question-answering tasks. Additionally, this paper reduces the complexity of using BusinessBERT for other NLP applications by making it freely available as a pretrained language model to the business community. The model, its pretraining corpora and corresponding code snippets are accessible via https://github.com/pnborchert/BusinessBERT.
Date: 2024-06-01
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Published in European Journal of Operational Research, 2024, 315 (2), pp.691-702. ⟨10.1016/j.ejor.2024.01.023⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04542524
DOI: 10.1016/j.ejor.2024.01.023
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().