Do the US president's tweets better predict oil prices? An empirical examination using long short-term memory networks
Stephanie Beyer Díaz,
Kristof Coussement (),
Arno de Caigny (),
Luis Fernando Pérez and
Stefan Creemers
Additional contact information
Stephanie Beyer Díaz: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Kristof Coussement: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Arno de Caigny: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Luis Fernando Pérez: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Stefan Creemers: LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
The price of oil is highly complex to predict as it is impacted by global demand and supply, geopolitical events, and market sentiment. The accuracy of such predictions, however, has far-reaching implications for supply chain performance, portfolio management, and expected stock market returns. This paper contributes to the oil price prediction literature by evaluating the predictive impact of the US President's communication on Twitter, while benchmarking various Natural Language Processing (NLP) techniques, including Term Frequency-Inverse Document Frequency (TF-IDF), Word2Vec, Doc2Vec, Global Vectors for Word Representation (GloVe), and Bidirectional Encoder Representations from Transformers (BERT). These techniques are combined with a deep neural network Long Short-Term Memory (LSTM) architecture using a five-day lag for both the oil price and the textual Twitter data. The data was collected during the term of US President Donald Trump, resulting in 1449 days of crude oil price prediction and a total of 16,457 tweets. The study is validated for Brent and West Texas Intermediate blends, using the daily price of a barrel of crude oil as the target variable. The results confirm that including the US President's tweets significantly increases the predictive power of oil price prediction models, and that an LSTM architecture with BERT as NLP technique has the best performance.
Keywords: Analytics; Oil price prediction; LSTM; BERT; NLP; US president (search for similar items in EconPapers)
Date: 2023-06-18
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Published in International Journal of Production Research, 2023, 62 (6), pp.2158-2175. ⟨10.1080/00207543.2023.2217286⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04543480
DOI: 10.1080/00207543.2023.2217286
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().