Discovering the unknown unknowns of research cartography with high-throughput natural description
Tanay Katiyar,
Jean-François Bonnefon,
Samuel Mehr () and
Manvir Singh ()
Additional contact information
Tanay Katiyar: IJN - Institut Jean-Nicod - DEC - Département d'Etudes Cognitives - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - CdF (institution) - Collège de France - CNRS - Centre National de la Recherche Scientifique - Département de Philosophie - ENS-PSL - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres
Samuel Mehr: University of Auckland [Auckland], Yale University [New Haven]
Manvir Singh: IAST - Institute for Advanced Study in Toulouse
Post-Print from HAL
Abstract:
To succeed, we posit that research cartography will require high-throughput natural description to identify unknown unknowns in a particular design space. High-throughput natural description, the systematic collection and annotation of representative corpora of real-world stimuli, faces logistical challenges, but these can be overcome by solutions that are deployed in the later stages of integrative experimental design.
Date: 2024
Note: View the original document on HAL open archive server: https://hal.science/hal-04551319v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Behavioral and Brain Sciences, 2024, 47, pp.e50. ⟨10.1017/S0140525X23002170⟩
Downloads: (external link)
https://hal.science/hal-04551319v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04551319
DOI: 10.1017/S0140525X23002170
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().