A pure dual approach for hedging Bermudan options
Aurélien Alfonsi (aurelien.alfonsi@enpc.fr),
Ahmed Kebaier (ahmed.kebaier@univ-lemans.fr) and
Jérôme Lelong (jerome.lelong@univ-grenoble-alpes.fr)
Additional contact information
Aurélien Alfonsi: MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique, CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées
Ahmed Kebaier: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Jérôme Lelong: DAO - Données, Apprentissage et Optimisation - LJK - Laboratoire Jean Kuntzmann - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Post-Print from HAL
Abstract:
This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a "purely dual" algorithm following the spirit of Rogers (2010) in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.
Keywords: Optimal stopping; Pure dual algorithm; Martingale; Least square Monte Carlo; Bermudan option; Hedging (search for similar items in EconPapers)
Date: 2024-04-29
References: Add references at CitEc
Citations:
Published in Mathematical Finance, inPress
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04563713
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).