PCA on binary variables. An application to at-risk students in higher education
Pérez Francisco Rabadán,
Nicolas Habib Chamoun and
María Victoria Ramírez-Muñoz ()
Additional contact information
Pérez Francisco Rabadán: URJC - Universidad Rey Juan Carlos = Rey Juan Carlos University
Nicolas Habib Chamoun: Washington University at St Louis
María Victoria Ramírez-Muñoz: UA - Université d'Angers, EGEI - Éthique et Gouvernance de l’Entreprise et des Institutions - UCO - Université Catholique de l'Ouest
Post-Print from HAL
Abstract:
PCA is commonly applied to continuous or Likert scale variables in social sciences. PCA on binary variables is common in the field of biology, and we have conducted a study in education where we have adapted this methodology. We believe that this topic is relevant to Big Data because of this peculiarity
Keywords: Principle Component Analysis PCA; Higher education; At risk students (search for similar items in EconPapers)
Date: 2024-05-30
References: Add references at CitEc
Citations:
Published in Programa del I Congreso Internacional de Big Data y Matemáticas: VI Jornadas, Facultad de Ciencias de la Economía y de la Empresa URJC, May 2024, Madrid, España
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04590771
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().