EconPapers    
Economics at your fingertips  
 

Measuring productivity when technology is heterogeneous using a latent class stochastic frontier model

K. Hervé Dakpo, Laure Latruffe, Yann Desjeux and Philippe Jeanneaux ()
Additional contact information
K. Hervé Dakpo: UMR PSAE - Paris-Saclay Applied Economics - AgroParisTech - Université Paris-Saclay - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Philippe Jeanneaux: VAS - VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement, Territoires - Territoires - AgroParisTech - VAS - VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - UCA - Université Clermont Auvergne

Post-Print from HAL

Abstract: We examine an extension of the latent class stochastic frontier model (LCSFM) to productivity estimation and the decomposition of productivity change into technical change, output-oriented technical efficiency change, and scale change. We base our productivity estimation on a Multi-class Grifell-Tatjé, Lovell & Orea Malmquist (GLOM) index. An advantage of this new productivity index is to account for classes' posterior probabilities to derive individual farm parameters. In addition, we extend our analysis to estimate a metafrontier GLOM productivity index to explore potentialities when all firms use the best available technologies. An empirical application to a sample of French sheep and goat farms observed between 2002 and 2021 confirms the necessity to account for technological heterogeneity when measuring productivity change. Among the two classes of farms identified by the LCSFM, the intensive class experiences TFP gains, while the extensive class sees its TFP worsening. However, the gap between intensive and extensive technologies seems to reduce over time. Finally, the multi-class GLOM reveals technical change as the primary driver of productivity for French goat and sheep farms.

Keywords: Multi-class Grifell-Tatjé; Lovell; Orea Malmquist productivity index; Metafrontier GLOM productivity index; Latent class stochastic frontier; Sheep and goat farms; France (search for similar items in EconPapers)
Date: 2024-05-13
References: Add references at CitEc
Citations:

Published in Empirical Economics, 2024, ⟨10.1007/s00181-024-02604-0⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
Journal Article: Measuring productivity when technology is heterogeneous using a latent class stochastic frontier model (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04599393

DOI: 10.1007/s00181-024-02604-0

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-25
Handle: RePEc:hal:journl:hal-04599393