EconPapers    
Economics at your fingertips  
 

Using LLMs techniques for Time Series Prediction

Pierre Brugière () and Gabriel Turinici ()
Additional contact information
Pierre Brugière: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Gabriel Turinici: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: We show here how transformers used in Large Langage Models can be used for financial time series predictions

Keywords: LLMs; Time series prediction; Transformers; Attention is all you need; Chat GPT (search for similar items in EconPapers)
Date: 2024-10-17
References: Add references at CitEc
Citations:

Published in JP Morgan 6th Global Machine Learning Conference, JP Morgan, Oct 2024, Paris, France

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04749086

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-04749086