Monotone methods in counterparty risk models with nonlinear Black–Scholes-type equations
Bénédicte Alziary and
Peter Takáč
Additional contact information
Bénédicte Alziary: IMT - Institut de Mathématiques de Toulouse UMR5219 - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique
Peter Takáč: Universität Rostock
Post-Print from HAL
Abstract:
Abstract A nonlinear Black–Scholes-type equation is studied within counterparty risk models . The classical hypothesis on the uniform Lipschitz-continuity of the nonlinear reaction function allows for an equivalent transformation of the semilinear Black–Scholes equation into a standard parabolic problem with a monotone nonlinear reaction function and an inhomogeneous linear diffusion equation. This setting allows us to construct a scheme of monotone, increasing or decreasing, iterations that converge monotonically to the true solution. As typically any numerical solution of this problem uses most computational power for computing an approximate solution to the inhomogeneous linear diffusion equation, we discuss also this question and suggest several solution methods, including those based on Monte Carlo and finite differences/elements.
Date: 2022-08-09
References: Add references at CitEc
Citations:
Published in SeMA Journal: Boletin de la Sociedad Española de Matemática Aplicada, 2022, Handbook of Differential Equations: Evolutionary Equations, 80 (3), pp.353-379. ⟨10.1007/s40324-022-00306-0⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04888252
DOI: 10.1007/s40324-022-00306-0
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().