EconPapers    
Economics at your fingertips  
 

Augmenting the availability of historical GDP per capita estimates through machine learning

Philipp Koch, Viktor Stojkoski and Cesar Augusto Hidalgo ()
Additional contact information
Philipp Koch: UT - Université de Toulouse, EcoAustria Inst Econ Res, Vienna, Austria
Viktor Stojkoski: UT - Université de Toulouse, University of Skopje
Cesar Augusto Hidalgo: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Post-Print from HAL

Abstract: Can we use data on the biographies of historical figures to estimate the GDP per capita of countries and regions? Here, we introduce a machine learning method to estimate the GDP per capita of dozens of countries and hundreds of regions in Europe and North America for the past seven centuries starting from data on the places of birth, death, and occupations of hundreds of thousands of historical figures. We build an elastic net regression model to perform feature selection and generate out-of-sample estimates that explain 90% of the variance in known historical income levels. We use this model to generate GDP per capita estimates for countries, regions, and time periods for which these data are not available and externally validate our estimates by comparing them with four proxies of economic output: urbanization rates in the past 500 y, body height in the 18th century, well-being in 1850, and church building activity in the 14th and 15th century. Additionally, we show our estimates reproduce the well-known reversal of fortune between southwestern and northwestern Europe between 1300 and 1800 and find this is largely driven by countries and regions engaged in Atlantic trade. These findings validate the use of fine-grained biographical data as a method to augment historical GDP per capita estimates. We publish our estimates with CI together with all collected source data in a comprehensive dataset.

Keywords: Economic history; Machine learning; Economic development (search for similar items in EconPapers)
Date: 2024-09-16
References: Add references at CitEc
Citations:

Published in Proceedings of the National Academy of Sciences of the United States of America, 2024, 121 (39), pp.e2402060121. ⟨10.1073/pnas.2402060121⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04948360

DOI: 10.1073/pnas.2402060121

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-22
Handle: RePEc:hal:journl:hal-04948360