EconPapers    
Economics at your fingertips  
 

Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs

Carla Irissarry () and Thierry Burger-Helmchen ()
Additional contact information
Carla Irissarry: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Thierry Burger-Helmchen: BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

Post-Print from HAL

Abstract: While artificial intelligence has successful and innovative applications in common medicine, could its application facilitate research on rare diseases? This study explores the application of artificial intelligence (AI) in orphan drug research, focusing on how AI can address three major barriers: high financial risk, development complexity, and low trialability. This paper begins with an overview of orphan drug development and AI applications, defining key concepts and providing a background on the regulatory framework of and AI's role in medical research. Next, it examines how AI can lower financial risks by streamlining drug discovery and development processes, analyzing complex data, and predicting outcomes to improve our understanding of rare diseases. This study then explores how AI can enhance clinical trials through simulations and virtual trials, compensating for the limited patient populations available for rare disease research. Finally, it discusses the broader implications of integrating AI in orphan drug development, emphasizing the potential for AI to accelerate drug discovery and improve treatment success rates, and highlights the need for ongoing innovation and regulatory support to maximize the benefits of AI-driven research in healthcare. Based on those results, we discuss the implications for traditional and AI-powered business in the drug industry.

Keywords: AI; Research; Orphan drug; Rare disease; Drug discovery and industry; Business; Financial risk; Clinical and virtual trials; Health economics; Development; Treatment success (search for similar items in EconPapers)
Date: 2024-09-09
Note: View the original document on HAL open archive server: https://hal.science/hal-04990197v1
References: Add references at CitEc
Citations:

Published in Businesses, 2024, 4 (3), pp.453-472. ⟨10.3390/businesses4030028⟩

Downloads: (external link)
https://hal.science/hal-04990197v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04990197

DOI: 10.3390/businesses4030028

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-25
Handle: RePEc:hal:journl:hal-04990197