EconPapers    
Economics at your fingertips  
 

A hypothesis test for comparing two partitions obtained from the same dataset

Mathias Bourel, Badih Ghattas () and Meliza González
Additional contact information
Mathias Bourel: IMERL - Instituto de Matemática y Estadística Rafael Laguardia [Montevideo] - UDELAR - Universidad de la República [Montevideo]
Badih Ghattas: AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Meliza González: Universita de la Republica

Post-Print from HAL

Abstract: We propose a non parametric hypothesis test to compare two partitions of a same data set. The partitions may result from two different clustering approaches. The test may be done using any comparison index but we focus in particular on the Matching Error (ME) that is related to the misclassification error in supervised learning. Some properties of the ME and, especially, its distribution function for the case of two different partitions are analyzed. Extensive simulations and experiments show the efficiency of the test.

Keywords: Clustering; Comparing partitions; hyposthesis test; Matching error (search for similar items in EconPapers)
Date: 2025-02-09
References: Add references at CitEc
Citations:

Published in Communications in Statistics - Simulation and Computation, 2025, pp.1-23. ⟨10.1080/03610918.2025.2458574⟩

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05072705

DOI: 10.1080/03610918.2025.2458574

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-05-27
Handle: RePEc:hal:journl:hal-05072705