Estimation of spatial panel data models with random effects using Laplace approximation methods
Yuheng Ling,
Kaixuan Bai and
Yue Yang
Additional contact information
Yuheng Ling: Hainan Normal University [Haikou, China]
Kaixuan Bai: CESAER - Centre d'économie et de sociologie rurales appliquées à l'agriculture et aux espaces ruraux - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Dijon - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement
Yue Yang: Hainan University
Post-Print from HAL
Abstract:
This paper proposes using integrated nested Laplace approximations (INLAs), a full Bayesian approach, for estimating spatial panel data models with random effects. These models encompass Anselin's model, Kapoor's model and the generalised spatial random effects model. We show that a spatial autoregressive process in the error terms is a special case of Gaussian Markov random fields (GMRFs), thereby reducing computational costs. The computational benefit is further enhanced through the use of INLAs to compute the posterior marginals of model parameters. Finite sample properties of the INLA-GMRF approach are assessed through comprehensive Monte Carlo simulations. We also compare its computational efficiency with classic estimation methods. Finally, we demonstrate this approach with an empirical study on renewable energy production in China.
Keywords: Bayesian estimation; Integrated nested Laplace approximation; Gaussian Markov random field; Spatial panel data models with random effects (search for similar items in EconPapers)
Date: 2025-06-02
References: Add references at CitEc
Citations:
Published in Spatial Economic Analysis, 2025, pp.1-22. ⟨10.1080/17421772.2025.2504503⟩
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-05164665
DOI: 10.1080/17421772.2025.2504503
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().